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ABSTRACT Low-coverage next-generation sequencing methodologies are routinely employed to genotype large populations. Missing
data in these populations manifest both as missing markers and markers with incomplete allele recovery. False homozygous calls at
heterozygous sites resulting from incomplete allele recovery confound many existing imputation algorithms. These types of systematic
errors can be minimized by incorporating depth-of-sequencing read coverage into the imputation algorithm. Accordingly, we
developed Low-Coverage Biallelic Impute (LB-Impute) to resolve missing data issues. LB-Impute uses a hidden Markov model that
incorporates marker read coverage to determine variable emission probabilities. Robust, highly accurate imputation results were
reliably obtained with LB-Impute, even at extremely low (,13) average per-marker coverage. This finding will have implications for the
design of genotype imputation algorithms in the future. LB-Impute is publicly available on GitHub at https://github.com/dellaporta-
laboratory/LB-Impute.
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THE imputation of missing genotype data has been a key
research topic in statistical genetics since well before the

advent of next-generation sequencing (NGS) technologies.
The goal of many of these algorithms was to reconstruct
haplotypes from Sanger or microarray-based genotyping,
usually on human populations. Strategies employing the
expectation-maximization algorithm (Hawley and Kidd
1995; Long et al. 1995; Qin et al. 2002; Scheet and Stephens
2006), Bayesian inference (Niu et al. 2002; Stephens and
Donnelly 2003), or Markovian methodology (Stephens
et al. 2001; Broman et al. 2003; Broman and Sen 2009), local
ancestry and gametic phase, could be used to resolve missing
markers within a population (Browning and Browning
2011). In these cases, missing genotypes were assigned based
on the most likely proximal haplotypes. These computational
methods greatly increased the informative content of geno-
typing information, especially for population studies (Spencer

et al. 2009; Cleveland et al. 2011). While these programswere
powerful and accurate, they also could be computationally
expensive. Further, they assumed that available genotypes
were largely correct, which could cause issueswith sequencing
data sets.

Thedevelopmentofprograms that focusedprimarilyon the
imputation of missing data and haplotype phasing was likely
motivated by several factors. Genome-wide association stud-
ies could be enhanced by the inference of additional markers
using largemultipopulationdata sets suchas the International
HapMap Project (International HapMap Consortium et al.
2010). The emergence of the meta-analysis led to a need
for algorithms that couldmerge disparate data sets (Browning
and Browning 2007; Howie et al. 2009; Li et al. 2010; Liu
et al. 2013; Fuchsberger et al. 2015). These algorithms often
employed large haplotype reference panels to improve im-
putation (Marchini et al. 2007; Browning and Browning
2009; Howie et al. 2009). In biallelic recombinant plant
populations, a parental reference panel is sufficient to ex-
plain the genetic structure of the offspring (Yu et al. 2008),
but reference panels are often not available.

Genome resequencing has become a critical tool for char-
acterizing genetic diversity in plant populations. Unlike geno-
typing and PCR-based assays, sequencing can characterize
large numbers of useful markers without a priori knowledge
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of a given population’s genetic diversity. However, when ap-
plying genome resequencing to the study of large popula-
tions, both time and cost must be considered. Sequencing
methods employing multiplexing, the simultaneous sequenc-
ing of multiple samples in a single pool, have been developed
to enhance efficiency and reduce sample costs. These meth-
ods include multiplexed whole-genome sequencing (WGS),
whole-exome sequencing (WES), restriction-site-associated
DNA markers (RAD), and genotype by sequencing (GBS)
(Miller et al. 2007; Broman and Sen 2009; Wu et al. 2010;
Bamshad et al. 2011; Elshire et al. 2011; Li et al. 2011; Nielsen
et al. 2011; 1000 Genomes Project Consortium et al. 2012;
Heffelfinger et al. 2014). WES, RAD, and GBS, collectively
called reduced-representation sequencing (RRS) methods, in-
terrogate a small but consistent portion of a genome. The
tradeoff occurs when large numbers of samples are pooled
and sequenced together: individual-per-sample and per-site
coverage can be highly variable.

Any low-coverage sequencingmethodwill result inmissing
and erroneous genotypes. Missing data occur when sequenc-
ing coverage is insufficient to interrogate every available site
and allele in each sample. Although a RRS experiment is
restricted by design to a subset of the total number of alleles,
it is highly unlikely that the entire set of available sites and
alleles will be recovered in each sample. The proportion of
unrecovered alleles increases with marker density and the
level ofmultiplexing.Missing datamanifest in two forms. The
first form is seenwhennoalleles are recovered at amarker in a
given sample, resulting in the absence of any genotype at that
site. The second form occurs when one allele is not recovered
at a given marker in a sample. In this case, if the site is
monomorphic, no information is lost. If the marker is hetero-
zygous in the sample, however, that site will be falsely iden-
tified as a homozygote (Swarts et al. 2014). Bothmissing sites
and erroneous homozygote calls pose the greatest challenge
to the imputation of missing data in low-coverage sequencing
data sets.

Recently, several algorithms have emerged that impute
RRS data, and GBS data sets in particular, generated from
plant populations (Huang et al. 2014; Swarts et al. 2014;
Rowan et al. 2015). Because GBS relies on both a high degree
of multiplexing and reduced representation to maximize ef-
ficiency, it is emblematic of both the challenges and opportu-
nities of processing low-coverage sequencing data. That is, it
can efficiently produce population-scale data sets with calls
on tens of thousands of markers, but within each individual
sample there will be considerable missing data. The mpim-
pute algorithm provides the useful innovation of imputing
missing parental data to improve the resolution of offspring
data (Huang et al. 2014). Nevertheless, mpimpute is limited
in the sense that it only imputes haploid (or homozygous)
data and does not incorporate potentially useful read-depth
information into the imputation method. A different approach
used in Full-Sib Family Haplotype Imputation (FSFHap)
(Bradbury et al. 2007; Swarts et al. 2014) is capable of imput-
ing low-coverage sequencing data with high heterozygosity

from biallelic populations. FSFHap works by first identifying
parental haplotypes in the progeny. It then iterates over the
progeny and identifies each site as being homozygous for one
of the parents or heterozygous via a hidden Markov model
(HMM). The key observation allowing resolution of heterozy-
gosity is that a region that contains alleles from both parents
is likely to be heterozygous, even if the recovered markers
themselves are homozygous. Another recently published
HMM-based approach, Trained Individual Genome Recon-
struction (TIGER) (Rowan et al. 2015), translates genotypes
into one of six observed states (AA, BB, AB, AU, BU, and UU,
with U indicating an uncertain allele). This approach applies
a cutoff of five reads of coverage, beneath which the possi-
bility of a false homozygote is incorporated into the model
in the form of the AU and BU observations. Finally, TIGER
imputes genotypes using allele frequencies in a sliding-
window method. While the TIGER algorithm is described in
the paper by Rowan et al. (2015), software for the TIGER
algorithm is not publically available.

HerewedescribeLow-CoverageBiallelic Impute(LB-Impute),
an algorithm that has been designed to overcome the chal-
lenges of low-coverage sequencing in biallelic plant popula-
tions. Because low-sequencing coverage may result in false
homozygosity, the probability of false homozygosity can be
estimated by taking into account depth-of-coverage informa-
tion at eachmarker. LB-Impute incorporates depth-of-coverage
information into the emission probabilities of a HMM. Using
this approach, LB-Impute is capable of correcting false homo-
zygosity and imputing missing genotypes in biallelic sequenc-
ing data sets, evenwhen per-marker coverage is extremely low
(,13).

Materials and Methods

LB-Impute is a HMM-based method. Emission and transition
probabilities are calculated from allelic depth of coverage and
the physical distance betweenmarkers. The Viterbi algorithm
(Rabiner 1989) is used to determine the most likely sequence
of parental ancestry (hidden states) for each offspring in a
biallelic population. Choosing the most likely sequence of
hidden states, instead of the best state for each marker, re-
duces the impact of individual erroneous markers in a data
set. The assumption in the model is that markers are inde-
pendent, in the sense that the emission and transition prob-
abilities of a given marker will not influence the probabilities
of surrounding markers. Therefore, LB-Impute uses a first-
order Markov chain.

The steps of this algorithm can be broadly described as
follows: (1) determination of parental haplotypes, (2) assign-
ment of reference and nonreference alleles for eachmarker to
parental states, (3) calculation of parental-state emission
probabilities based on the depth-of-sequencing coverage of
each allele in all markers, (4) determination of transition
probabilities via the distance in base pairs between markers,
(5) calculation of all possible paths through the hidden states
(parental genotypes) from markers t to t + i via a Viterbi
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trellis, (6) selection of the parental genotype at marker t+ 1
in the highest-probability path as the next genotype in the
final path, (7) regeneration of the Viterbi trellis frommarkers
t to t + i using the previous highest-probability path’s marker
t + i genotype as the new marker M, (8) forward iteration of
trellis markers across the entire chromosome, (9) reverse
iteration of trellis windows across the entire chromosome,
(10) comparison of the forward and reverse paths across
the chromosome to determine a set of consensus genotypes
for a given offspring, (11) setting of genotypes that conflict
between paths to missing, (12) correcting of genotypes in the
original data set that conflict with consensus calls to the con-
sensus genotype, and (13) setting of missing genotypes be-
tween concordant consensus calls in the original data set to
the consensus genotypes. A more detailed explanation of key
steps in the algorithm follows.

The initial step of the algorithm is to assign emission
probabilities to each marker. Parental ancestry is the hidden
state. Each read is assigned to a parent based on its sequence,
and a final emission probability is calculated based on the
number of reads assigned to eachparent and theprobability of
each read being erroneous. The emission probabilities for
genetic contribution from a single parent, or homozygosity,
at a given marker are calculated using the equation

EN ¼ ð1 2 errrÞRNðerrrÞR!N (1)

where EN is the emission probability of a given hidden state,
or parental ancestry, N for the given genotype, errr is the
probability of a sequencing error for each read at the position
of a marker, RN is the number of reads with sequence match-
ing the sequence of parent N, and R!N is the number of reads
with sequence not matching the genotype of parent N. The
raw emission probability for the heterozygous hidden state is
calculated using the equation

EH ¼ �
0:5RN

��
0:5R!N

�
(2)

where EH is the emission probability of the third hidden state,
heterozygosity, or genetic contribution from both parents at a
given site.

While the raw emission probability takes into account the
likelihood that any one read is erroneous, genotyping errors
independent of coverage also may affect a data set. These
genotyping errors include misalignment of reads to the
reference genome, resulting in the incorrect placement of
a genotype, and an unannotated paralogous artifact. It is
therefore desirable to limit both theminimumandmaximum
emission probabilities to minimize the chance of an artifact
overinfluencing the final imputed genotypes. To do this,
each emission probability at a given position is divided by
the maximum emission probability at said position. Then
each probability is divided by 1 2 2 3 errg and finally has
errg added to it. The value errg represents the probability
of a genotyping error. The maximum and minimum pos-
sible emission probabilities for any given marker are

(1 2 errg)/(1 + errg) and errg/(1 + errg), respectively.
Actual emission probabilities do not sum to 1 but instead
will be constrained within these limits. The effect of emis-
sion probabilities on the model is determined by their ra-
tios rather than their sum.

In LB-Impute, the transition probabilities depend on the
probability of recombination between markers. This proba-
bility depends on the distance between markers. The proba-
bility of recombination is directly related to the distance in
base pairs between markers. The equations used to calculate
transition probabilities are

PS ¼ 0:5
�
1þ e2ðDistM=DistRÞ

�
(3)

and

PR ¼ 0:5
�
12 e2ðDistM=DistRÞ

�
(4)

where PS is the probability of maintaining a given hidden
state, and PR is the probability of a recombination event caus-
ing a change of hidden states. DistM is the distance in base
pairs between two markers, and DistR is the distance in base
pairs for transition probabilities to equalize. By default, we
assume that two recombinations are required to transition
from one homozygous parental state to the other homozy-
gous parental state, resulting in double recombination events
between proximal markers being heavily penalized com-
pared to single events. In a population with many recombi-
nation events (such as a recombinant inbred line), the user
may choose to allow for double events to have the same
transition probability as single recombination events.

The final modification to the standard Viterbi algorithm
(Rabiner 1989) is the use of a variable trellis window to
identify recombination breakpoints. Because one of the as-
sumptions in this program is that there may be a high rate of
error for any one marker, the incorporation of information
from multiple markers into a Markov chain may resolve this
issue. While it would be ideal for this chain to stretch the
entire length of the chromosome, it would be computation-
ally inefficient to calculate the probability of every possible
path through it, and therefore, an iterating-window approach
is used. The user may select the number of markers to be
incorporated into each trellis by changing the window size
n. Within a window, the probabilities of every possible path
between marker t and marker t + n (Figure 1A) are calcu-
lated using the emission and transition probabilities de-
scribed earlier. After the probabilities of every possible path
for a given window are calculated, the t + 1 hidden state of
the path with the highest probability is selected (Figure 1B).
Following this, the trellis is regenerated using the marker
that was t + 1 as the new t (Figure 1C).

LB-Impute first iterates these trellis windows across the
entire chromosome in the forward direction, and then it
iterates trellis windows across the entire chromosome in
the reverse direction by inverting the order of the markers
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on the chromosome. This generates two complete paths of
hidden parental states across the entire chromosome. This
approach is taken because, while the emission and transition
probabilities will be the same for the forward and reverse
paths, the value of the starting marker t may differ. Hidden-
state calls that are concordant between the forward and re-
verse paths are included in the final path. When the parental
ancestry at a marker conflicts between the forward and re-
verse paths, the corresponding marker is set to missing in the
final path for said offspring (Figure 1D). This is done even if
the marker has a call in the original data set because the
algorithm has determined the call to be unreliable. If the user
prefers to obtain as many imputed calls as possible, he or she
may choose to use the state with the higher probability from
the forward and reverse paths to determine a genotype for
the marker. Missing markers are inferred by the state of the
flanking markers. When the states of the flanking marker are
concordant, themissing marker is resolved to the genotype of
the flanking markers. When they are discordant, the missing
marker is not imputed (Figure 1E).

In addition to being able to impute bothmissing and falsely
homozygous genotypes in the offspring, the LB-Impute algo-
rithm allows imputation of missing parental alleles. Dense

founder genotype maps are critical for interpreting markers
and resolving recombination breakpointswith high resolution
in many biallelic populations. Missing parental genotypes
reduce the power of breakpoint resolution. To imputemissing
parental genotypes, parental haplotypes are recovered from
observed markers in the offspring. The approach is similar to
the one used to impute missing markers in the offspring. The
difference is that the parental state of flanking markers is
assigned to ambiguous rather than missing markers in each
offspring. The consensus genotype, as determined across
imputed offspring, for a missing parental marker is then
assigned to the parent. Using this system of parental imputa-
tion followed by offspring imputation as described by Huang
et al. (2014), a high-resolution map can be generated from
low-coverage sequencing data.

Algorithm testing

To evaluate LB-Impute, it was tested on simulated F1BC1 and
F2 populations, two data sets generated from an actual maize
F2 population (Heffelfinger et al. 2014), and the IBM Maize
Recombinant Inbred Line (RIL) population (Elshire et al.
2011). In the context of this study, an F1BC1 population is
one in which an offspring (F1) of inbred parents is backcrossed

Figure 1 Visual description of the LB-Impute algorithm. (A) Emission probabilities based on allelic depth of coverage and transition probabilities based
on expected recombination rate and distance between markers are used to build a Viterbi trellis window from markers t to t + n. (B) The probabilities of
every possible path through the Viterbi trellis window are calculated. (C) The path with the highest probability is selected, the state at t + 1 is added to
the final path, and then a new trellis is regenerated with marker t + 1 as the new t. (D) Paths are calculated in forward and reverse directions. A final path
is created from the consensus. At loci where the forward and reverse paths conflict (black boxes), a missing call is added to the final path. (E) Missing
calls are resolved from the consensus of surrounding states. Where surrounding states conflict, the call is left missing.
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to one of the parents, producing a population in which only
the recombination of the F1 is observable, and homozygous
alleles must come from the backcrossed parent. An F2 pop-
ulation is the result of selfing an F1 offspring to produce a
biallelic population in which recombination can be observed
on both chromosomes, and homozygous alleles from both
parents are present. Performance comparisons were done
with FSFHap.

Generation of simulated data: Simulated F1BC1 and F2 data
sets were generated using a custom Java-implemented algo-
rithm. The exact methodology for simulated data set con-
struction is described in Supporting Information, File S1,
Note 2. In total, 80 data sets, 40 F1BC1 and 40 F2, were
generated, with coverage values spaced evenly from 1000
reads per sample (0.13 coverage) up to 40,000 reads per
sample (4.03 coverage). Twenty replicates were created
for each data set.

The amount of missing or erroneous data was inversely
proportional to read coverage. Missing data refers to sites
within a sample where there are no aligned reads, resulting
in an absent genotype call. Erroneous data occur when in-
complete allele recovery results in false homozygosity at a
given site. For instance, the simulated F1BC1 43 coverage
data sets had only 13.48% [60.34% (SD)] missing or erro-
neous data, whereas the 0.13 coverage data sets had a miss-
ing or erroneous fraction of 95.16% [60.20% (SD)] (Figure
S1A). For the 4.03 and 0.13 F2 data sets, the missing or
erroneous fractions were 13.61% [60.48% (SD)] and
95.12% [60.34% (SD)], respectively (Figure S1B).

Preparation of real data: GBS data sets from a previously
described B73 3 Country Gentleman (B73 3 CG) F2 maize
population (Heffelfinger et al. 2014) and the IBMMaize RIL
(Elshire et al. 2011) data set were prepared as described in
File S1, Note 3. For the B73 3 CG data sets, five validation
sets were generated with half the calls with seven aligned
reads randomly removed. At a depth of seven reads, the
chance of a false homozygote is only 1.56% (Swarts et al.
2014). For the IBM Maize RIL population, five validation
sets with half the markers with four aligned reads randomly
removed were created. While it would have been preferable
to use seven reads, the lower overall sequencing coverage
resulted in most of the samples having zero markers with
seven reads. While false homozygosity may have resulted in
some of the markers being erroneous (12.5% of heterozy-
gotes with four reads would be expected to be miscalled),
the low levels of heterozygosity present in the data set ow-
ing to repeated selfing would be expected to minimize this
effect.

Algorithm settings

For the analyses described, FSFHap (Swarts et al. 2014),
Beagle (Browning and Browning 2007), and Mendel Impute
(Chi et al. 2013) versions and settings are described in File
S1, Note 1. LB-Impute was set to its default parameters. For

emission probabilities, we assume a 5% resequencing error
rate (errr) and a 5% genotype error rate (errg). To determine
transition probabilities, a 10-Mbp recombination interval
(DistR) was applied as described in Equations 3 and 4. We
also used the default setting that transitions between homo-
zygous parental states that are the product of two transition
probabilities. The Markov trellis window was set to a length
of 7. For the RIL data set, the double recombination events
were treated as a single event.

Data availability

LB-Impute is publicly available athttps://github.com/dellaporta-
laboratory/LB-Impute. Test data files used in these analyses
are also available on the Github site.

Results

Evaluation of LB-Impute was performed on five distinct data
set categories: two simulated F2 and F1BC1 populations, two
maize B73 3 CG F2 populations, and one B73 3 Mo17 RIL
population. To evaluate the performance of LB-Impute, both
the fraction of data imputed and the accuracy were mea-
sured. Results from the LB-Impute analyses were compared
with those of FSFHap (Bradbury et al. 2007; Swarts et al.
2014), a widely used program designed to deal with false
homozygosity resulting from incomplete coverage of hetero-
zygous markers. Like LB-Impute, FSFHap is designed specif-
ically to impute biallelic populations. The performance of
both programs was tested on the set of simulated data sets
and real data sets. Additionally, Beagle and Mendel Impute,
which are not designed to account for false homozygosity,
were tested on simulated data sets.

LB-Impute and FSFHap performance on simulated data

The first parameter considered was the fraction of data that
was leftmissing in each imputed data set. LB-Impute left,1%
of markers missing in the F1BC1 and F2 data sets at $0.93
coverage. The lowest fraction of markers imputed was
94.54% [60.36% (SD)]. FSFHap was unable to impute data
sets in either the F1BC1 or F2 data sets at,0.43 coverage but
achieved .99% marker imputation in higher-coverage data
sets (Figure S2).

Both FSFHap and LB-Impute resolved all markers, not just
those that were missing. Accordingly, absolute accuracy was
measured as the fraction of nonmissing markers in the final
imputed data sets that were correct (Figure 2). Importantly,
LB-Impute achieved.99% accuracy in the F1BC1 and F2 data
sets at all tested levels (0.1–2.53) of coverage. In contrast,
for FSFHap, absolute accuracy$99%was achieved inmost of
the data sets, occurring with $0.83 coverage in F1BC1 and
$0.43 coverage in F2. The major exception to the trend of
high absolute accuracy of FSFHap was its inability to impute
data sets of either population at ,0.43 coverage. The other
exception to this trend was the 0.4–0.73 coverage data sets
in F1BC1, inclusive, which reported a minimum absolute ac-
curacy of 83.43% [64.65% (SD)] at 0.63 coverage.
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Next, the fraction of recombination breakpoints imputed
correctly (Figure S3A) and the mean number of missing
markers around recombination breakpoints (Figure S3B)
were evaluated. A recombination event was considered to
be correctly imputed if the flanking imputed genotypes
matched the true flanking genotypes of the recombination
event. Missing markers were determined by the number of
markers between the recombination event and the imputed
genotypes. Again, LB-Impute was able to correctly impute
recombination events with greater frequency in both the F2
(minimum accuracy 77.16%, maximum accuracy 90.09%)
and F1BC1 (minimum accuracy 76.87%, maximum accuracy
89.95%) populations than FSFHap (minimum accuracy
44.65%, maximum accuracy 80.71% for F2; minimum accu-
racy 12.86%, maximum accuracy 63.07% for F1BC1). Most of
the recombination events considered to be incorrectly im-
puted were the result of the imputed breakpoint being
slightly offset from the true event rather than erroneous gen-
otyping. The greater accuracy of LB-Impute was somewhat at
the expense of the absolute number of markers imputed. LB-
Impute left more missing markers (minimum of 2.35markers
per event, maximum of 150.57 markers per event) than
FSFHap (minimum 0.15, maximum 3.30) in both the F1BC1

and F2 data sets.
Finally, it was observed that FSFHap greatly outperformed

LB-Impute in terms of run time, with run times ranging from
3.95 to46.95sec.Asdiscussednext, these run times increased,
however, when LB-Impute was set for greatest accuracy by
extending the length of the trellis window.

Effect of LB-Impute window length on performance

The length of the Markov trellis window in LB-Impute affects
howmuch information is used to predict genotype, the trade-
off being increased run times. To demonstrate this, window
lengths of between 2 and 7 were tested on simulated F2
(Figure S4A) and F1BC1 (Figure S4B) 0.13, 0.53, 1.03,
and 2.53 coverage data sets. Both accuracy and run time
were evaluated. At window length 2, accuracy fell between

66.69 and 70.70%. At window length 7, accuracy was.99%
in all simulations, and atwindow length 6, accuracywas greater
than.98% in all simulations. The accuracy of other simulations
varied with window length and coverage in a similar fashion.

Windowlengthalsohadaneffect on the fractionofmarkers
imputed.Awindow lengthof 2 resulted inonly39.38–43.01%
of the markers being imputed in F2 populations, whereas
longer window lengths saw greatly improved performance,
with .94% of all markers being imputed by window length
7. Window size effect on run time was tested with a window
size of 2, resulting in run times ranging from a minimum of
31.13 sec at 0.13 coverage to amaximum of 17,878.90 sec at
2.53 coverage with a window size of 7 (Figure S5, A and B).

Beagle and Mendel Impute performance

Beagle (Browning and Browning 2007) and Mendel Impute
(Chi et al. 2013) were tested on all simulated F2 and F1BC1

data sets, and the results were compared to those of LB-
Impute. In F1BC1 data sets, Mendel Impute was able to impute
at 98.76% [61.51% (SD)] accuracy at 2.53 coverage and
.90% accuracy at .1.53 coverage. Below 1.53 coverage,
however, accuracy dropped off precipitously until reaching
50.10% [61.74% (SD)] at 1.13 coverage. In F2 data sets,
it performed similarly at .1.53 coverage and better below,
with a minimum accuracy of 72.61% [61.50% (SD)] at 0.73
coverage (Figure S6A). Beagle had a maximum accuracy of
78.60% [61.00% (SD)] at 2.53 coverage and a minimum of
50.69% [61.97% (SD)] in the F1BC1 data sets. In the F2 data
sets, its maximum and minimum accuracies were 78.50%
[60.73% (SD)] and 37.07% [60.19% (SD)] at 2.53 and
0.13 coverage, respectively (Figure S6B).

LB-Impute and FSFHap performance on real data

To determine the accuracy of LB-Impute on real sequencing
data, it was tested on two GBS data sets generated from a
maize B733 CG F2 population (Heffelfinger et al. 2014) and
the IBM Maize RIL population (Elshire et al. 2011). One B73
3 CG data set, containing 11,219 postfilter markers, was
generated from a HincII digest of both parents plus 89 off-
spring (Figure 3A and Figure S7A). The other B733 CG data
set, produced by RsaI, had 127,144 postfilter markers iden-
tified in both parents and 90 offspring (Figure 3B and Figure
S7B). Finally, the IBMMaize RIL data set consisted of 14,493
postfilter markers typed in 275 offspring (Figure 3C and Fig-
ure S7C). Of the 275 offspring, 255 had validation markers.
The remaining 20 lacked sufficient sequencing coverage to
contribute validation markers.

Using default parameters (trellis window size of 7), LB-
Impute was able to impute amean of 99.87% [60.01% (SD)]
of all markers in HincII replicates and 99.18% [60.01%
(SD)] in RsaI replicates. FSFHap imputed 98.27% [60.10%
(SD)] of all markers in the HincII data set and 97.50%
[60.45% (SD)] in the RsaI data set. In the IBM Maize RIL
data set, LB-Impute and FSFHap were able to impute 93.92%
[60.01% (SD)] and 99.15% [60.01% (SD)] of the markers,
respectively.

Figure 2 Correct fraction of total imputed calls on simulated data sets.
Error bars indicate SD of the mean.
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Concordance between imputed genotypes and the valida-
tion set was 94.62% [63.02% (SD)] in HincII data sets and
91.44% [66.73% (SD)] in RsaI data sets. For FSFHap, mean
concordance was 94.71% [64.05% (SD)] forHincII data sets
and 89.70% [69.76% (SD)] for RsaI data sets. In the IBM
Maize RIL population, LB-Impute concordance was 96.98%
[65.14% (SD)], and FSFHap concordance was 93.27%
[611.24% (SD)]. LB-Impute performed significantly better
than FSFHap for the RsaI (P = 0.045) and IBM Maize RIL
data sets (P , 0.001), as evaluated by paired two-tailed
t-test. LB-Impute and FSFHap produced comparable results
for the HincII population (P = 0.70). LB-Impute mean run
time was 5323.66 sec [68.79 sec (SD)] for HincII repli-
cates, 50,248.17 sec [6402.60 sec (SD)] for RsaI repli-
cates, and 7092.82 sec [6380.97 sec (SD)] for the IBM
Maize RIL data set. These run times are for the entire data
set rather than each individual. Run times for FSFHap were
not taken because multiple manual steps were required
during the imputation process. As with the simulated data,
the FSFHap algorithm itself was considerably faster than
LB-Impute.

Discussion

Imputation algorithms have been critical for enhancing gen-
otyping studies. While originally used to resolve calls missing
inmergeddata sets and to increase the power of genome-wide
association studies, new demands have been placed on this
field of bioinformatics. One such demand has emerged from
low-coverage genome resequencing of plant populations. LB-
Impute resolves missing and erroneous data in these popula-
tions by incorporating allelic depth of coverage and physical
distance between markers into a HMM.

Simulated data indicated that LB-Impute is highly suited
for resolving missing and erroneous data, even at extremely
low levels of coverage. Accuracy .99% was achieved at all
tested levels of coverage ($0.13) in both F2 and F1BC1 data
sets. LB-Impute performed especially well compared tometh-
ods not designed for dealing with the issues associated with

low-coverage sequencing (e.g., false homozygosity), such as
Beagle (Browning and Browning 2007) and Mendel Impute
(Chi et al. 2013). At 0.13 coverage, LB-Impute was able to
maintain accuracy .99%, while both Beagle and Mendel
Impute fell to as low as 37.07 and 49.51%, respectively. LB-
Impute’s performance, however, was highly dependent on
window size. With a window length of 6 or 7, the tradeoff
for high accuracy was a dramatic increase in run time.

LB-ImputewastestedontwomaizeGBSdatasets(Heffelfinger
et al. 2014) and the IBM Maize RIL population (Elshire et al.
2011) In the B733CGdata sets, LB-Impute performed similarly
to FSFHap with the HincII data set but slightly better with the
RsaI and RIL data sets. Finally, it is worth noting that the true
accuracy of the imputation results may be higher than the con-
cordance because results corrected by imputation are likely to be
more reliable than unimputed genotypes (Swarts et al. 2014).

A limitation to LB-Impute is that it is not designed to handle
datafrompopulationswithmorethantwoalleles.Asthenumber
of segregating haplotypes within the population increases, the
number of hidden states expands according to the equation

nðn2 1Þ
2

þ n (5)

where n is the number of parental haplotypes. Given how the
Viterbi trellis window is constructed, this results in an exponen-
tial increase in the number of possible paths through hidden
states that must be solved. Going from a biallelic to a triallelic
population results in an increase in the number of paths by a
factor of 2(o + 1), where o is equal to the trellis window of the
Viterbi algorithm. Compounding this problem is that as the
number of parental haplotypes increases, the informative con-
tent of each individual marker decreases. To distinguish be-
tween haplotypes, the number of biallelic markers must be

n# 2m (6)

where n is the number of haplotypes, andm is the number of
biallelic markers. So, at minimum, two biallelic markers are
required to distinguish between three haplotypes, three

Figure 3 Per-sample concordance of LB-Impute and FSFHap for (A) HincII B73 3 CG, (B) RsaI B73 3 CG, and (C) IBM Maize RIL population data sets.
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biallelic markers are required to distinguish between five
haplotypes, and so on. Therefore, the trellis window de-
scribed in this algorithm must increase with the number of
segregating haplotypes to maintain the same level of power.
Ultimately, the increase in computing time would cripple per-
formance for even relatively simple multiallelic populations
such asmultiparent advanced generation intercross (MAGIC)
lines (Cavanagh et al. 2008). One approach to resolving this
issue with LB-Impute would be to eliminate the ability to
compute the heterozygous state for highly homozygous pop-
ulations. Homozygous populations, such as RILs, may contain
residual heterozygosity owing to incomplete fixation of al-
leles or unintended outcrossing. The ability to identify lines
with heterozygosity in populations that have undergone re-
peated selfing is a desirable objective.

As compared to FSFHap, LB-Impute should be used for
imputing populations when parental genotypes are available.
FSFHap’s ability to recover parental haplotypes without di-
rect parental genotyping makes it useful for imputing large
populations with no parental sequencing. Outside of these
cases, such as large populations with parental sequencing,
our results indicate the LB-Impute and FSFHap would per-
form similarly.

Conclusions

A critical goal in population genomics is to develop impu-
tation methods suitable to detect heterozygosity and re-
combination in low-coveragedata sets.Wehave successfully
implemented a solution to this problem that allows for ac-
curate parental and offspring imputation in low-coverage
sequencing data sets in biallelic populations. The resulting
algorithm, LB-Impute, is able to reliably resolvebothmissing
data and false homozygosity even for samples with less than
13 coverage.

Challenges remain, however, especially in multiparen-
tal populations with more than two segregating alleles.
Many populations used for agricultural breeding and re-
search meet this description. Without reliable methods for
resolving missing and erroneous data, the power of low-
coverage multiplexed sequencing in these populations will
be limited. While the method described in this paper is not
suitable for populations with more than two alleles, it does
identify read coverage as a key parameter for resolving this
challenge.

The next generation of imputation algorithms for low-
coverage sequencing data will benefit from using read cover-
age when identifying alleles present in a sample. By adjusting
the probability of observed genotypes based on coverage com-
bined with information about haplotype frequency gleaned
from identical-by-descent (IBD) regions across samples, het-
erozygous regionswill bemore likely to be accurately phased.
The need for considerable IBD homozygosity or phased pa-
rental haplotypes is unlikely to go away with improved algo-
rithms and will instead most likely be remedied by long-read
sequencing on all or part of a population.
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File	  S1	  
Supplemental	  materials	  and	  methods	  

Supplemental	  Note	  A:	  Imputation	  algorithm	  parameters	  

FSFHap version 5.2.6 was used for imputation. For simulated datasets, the only non-
default setting was Window LD as true. For the real B73xCG F2 datasets (Heffelfinger et 
al. 2014), minhap was 2 to impute over the low coverage real data. For the IBM Maize 
RIL population (Elshire et al. 2011), Window LD was true and minhap was set to 2. The 
BC option was set as false. Tassel graphical user interface version of FSFHap was used 
for the real B73xCG F2 data and the IBM Maize RIL data (Bradbury et al. 2007). 
Correspondence with the authors of FSFHap provided guidance as to properly calibrate 
FSFHap for low coverage data.  

Beagle (Browning and Browning 2007) version 4.1 was used for imputation of simulated 
F1BC1 and F2 datasets. Default settings were used. The matrix completion method, 
Mendel Impute v 2012 (Chi et al. 2013) used the highest-performing window setting as 
described by the authors of the method (window size = 75). 

Supplemental	  Note	  B:	  Generation	  of	  simulated	  data	  

Generation of simulated F1BC1 and F2 datasets was performed using custom Java scripts 
as follows. Sequencing reads were not simulated; instead, two final genotype datasets 
were directly generated for each set of conditions.  The first, an “actual” dataset, consists 
of a VCF file with true genotypes for each sample. The second, a “coverage-modified” 
dataset, involved first randomly distributing a finite number of “reads” between markers 
based on a binomial model. Then, final genotypes are determined by distributing these 
reads between possible alleles, also based on a binomial model.  

To explain further, “actual” and “coverage-modified” genotypes for a total of 200 
offspring in each dataset were determined on a 100 Mbp chromosome with 10,000 
polymorphic sites. Each sample was assigned a mean of three recombination events (± 2 
(SD)) that were placed at random locations on the chromosomes. It is worth noting that 
each individual chromosome was not simulated, rather, recombination breakpoints were 
placed randomly across the dataset and then marker genotypes determined as described as 
below. Therefore, the same distribution of recombination event counts was expected for 
both the simulated F1BC1 and F2 populations. 

Each sample began randomly at homozygous or heterozygous state at the first marker (as 
determined by lowest value marker coordinate), and then the state was transitioned at 
each recombination breakpoint. In the F2 population, both homozygous states were 
applied randomly, whereas in the F1BC1 only the first homozygous state was used. Once 
the genotypes of the markers were determined, reads were applied to the markers and 
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between alleles at each marker using a binomial model as described above in the 
"Coverage Modified" dataset. When only one of the two alleles at a heterozygous marker 
received sequencing coverage, that marker was changed into a homozygote depending on 
which marker had sequencing coverage. Parental calls were always accurate in these 
datasets.	  

Supplemental	  Note	  C:	  Generation	  of	  real	  data	  

To prepare real data for testing with LB-Impute and FSFHap, GBS sequencing data from 
a previously described B73xCG F2 population (Heffelfinger et al. 2014) and the IBM 
Maize RIL population (Elshire et al. 2011) were used. Reads from these datasets were 
first aligned to the B73 reference genome (Zea mays refgen v2) via NovoAlign 
(www.novocraft.com) under standard parameters and variants were identified via GATK 
(Mckenna et al. 2010). Two distinct datasets were generated from this population, one 
created by an RsaI GBS experiment and the other created by HincII. The RsaI dataset had 
eighty-nine F2 samples, and the HincII had ninety F2 samples. Parentals were sequenced 
in both datasets. Variants were then filtered using the following criteria: quality depth ≥ 
2, mapping quality rank sum ≥ -12.5, read position rank sum ≥ -8, haplotype score ≤ 10, 
mean r2 with proximal markers (5 upstream and downstream) ≥ 0.05, mapping quality ≥ 
40, and base call quality score ≥ 40, homozygous within and polymorphic between 
parents, and biallelic markers only. The B73xCG F2 population was additionally filtered 
with heterozygous fraction between 0.1 and 0.9, overall heterozygosity between 0.1 and 
0.9, and with aligned reads in at least 20% of the offspring. The RIL population was 
additionally filtered with overall heterozygosity between 0.01 and 0.99, heterozygous 
fraction between 0.0 and 0.2, and with aligned reads in at least 20% of the offspring. 
When multiple variants were found on the same set of aligned reads, only one was 
retained. Finally, all markers that did not align to a chromosome were removed. Filtering 
was performed using custom scripts.  
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Figure S1 Counts of missing and erroneous markers in each simulated A) F1BC1 and B) F2 
dataset. 
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Figure S3 Recombination event identification A) accuracy and B) mean missing marker count for 
LB-Impute and FSFHap. 
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Figure S6 Accuracy of A) Mendel Impute and B) Beagle imputation on simulated datasets 
compared to LB-Impute. 
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Figure S7 Sample coverage versus standard deviation of concordance for A) RsaI B73xCG data, 
B) HincII B73xCG data, and C) IBM Maize RIL data. The standard deviation of concordance
between the imputed and validation sets (five replicates) was calculated for each sample in the 
HincII and RsaI B73xCG F2 datasets. Mean concordance is given in Figure 3. 
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